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We study the nature of the ground state of the frustrated J1−J2 model and the J1−J3 model using a
variational algorithm based on projected entangled pair states. By investigating spin-spin correlation functions,
we observe a separation in parameter regions with long- and short-range order. A direct comparison with exact
diagonalizations in the subspace of short-range valence bond singlets reveals that the system is well described
by states within this subset in the short-range order regions. We discuss the question whether the system forms
a spin liquid, a plaquette valence bond crystal, or a columnar dimer crystal in these parameter regions.
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I. INTRODUCTION

Frustrated spin systems have attracted a lot of interest in
the last years, because they may possess exotic ground states
that are very different from conventional Néel ordered states.
Such states are especially intriguing, as connections to
high-Tc superconductivity have been put forward.1 They are
usually characterized by a breakdown of long-range order:
the system reorganizes in a quantum state where only local
antiferromagnetic correlations are present. The class of such
states, named short-range valence bond states �SRVB�, en-
compasses a broad range of phases: they range from valence
bond crystals �VBC� with broken translational symmetry to
pure spin liquids that have all symmetries restored.

Studies of frustrated systems are especially challenging,
because quantum Monte Carlo �QMC� studies are hindered
by the sign problem2 and density matrix renormalization
group �DMRG� �Refs. 3–5� investigations are hard to per-
form for systems with dimensionality larger than one. Other
methods that have been developed to take on these systems
are, for example, the coupled cluster method,6 DMRG com-
bined with QMC �Ref. 7�, and exact diagonalizations within
the subspace of SRVB.8,9 In this paper, we would like to give
the recently developed projected entangled pair states
�PEPS� algorithm10,11 a try. This algorithm has already been
successfully applied to the Heisenberg antiferromagnet,10 the
Bose-Hubbard model11 and the frustrated Shastry-Sutherland
model.12

In the following, we focus on the J1−J2−J3 model. We
discuss our observations and possible implications. Before
that, we give a quick review of the PEPS algorithm in Sec.
II. For a thorough explanation of the algorithm, we refer to
Refs. 10, 11, and 13. With the implementation of the algo-
rithm, we follow in large part Ref. 11.

II. PEPS ALGORITHM REVISITED

The PEPS algorithm is a variational algorithm within the
class of PEPS.10,11 These states are expedient for a numerical
study of many-particle systems; on the one hand, they fulfill
the area law that is fundamental to noncritical systems. On
the other hand, they possess a number of parameters that
scales polynomially with the system size. This feature makes
numerical simulations feasible.

The structure of PEPS is inspired from the structure of
matrix product states �MPS� �Refs. 14 and 15� that form the
basis for the successful DMRG algorithm:3–5 to each lattice
site, a tensor is associated that possesses a physical index and
a certain number of virtual indices. The virtual indices are
contracted according to a scheme that mimics the underlying
lattice structure. The dimension of the physical index equals
the physical dimension of the particle residing on that lattice
site. The dimension of the virtual indices, D, is the internal
refinement parameter of PEPS: D=1 specializes the PEPS to
a product state; the choice D=dN �with N being the total
number of lattice sites and d the physical dimension of one
particle� enlarges the space of PEPS to the complete Hilbert
space of the system.

The main idea of the algorithm is to optimize the tensors
such that the energy tends to a minimum. This can be done
by sequentially optimizing the tensors or by cooling the sys-
tem with the simulation of an imaginary time evolution.
Here, we follow the latter. Time and memory required for
this method turn out to be polynomial both in N and D: time
scales as N2D10 and memory as ND8 for systems with open
boundary conditions. For systems with periodic boundary
conditions, scaling requires an additional factor of D6. This
is why we assume open boundary conditions in the follow-
ing.

This polynomial scaling allows us to investigate systems
of sizes that are out of reach with other algorithms. We dis-
cuss our observations in the following sections.

III. J1−J2−J3 MODEL

In the J1−J2−J3 model on a square lattice, frustration is
caused by the competition between first-, second-, and third-
neighbor interactions of magnitudes J1, J2, and J3, respec-
tively:

H = J1�
�ij�

si · s j + J2 �
��ij��

si · s j + J3 �
���ij���

si · s j .

The phase diagram of this model is involved and still con-
troversial. Of special interest are the regimes of maximal
frustration that are suspected of having nonclassical ground
states.
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Let us first review the classical limit16–19 �S→��. In this
limit, the system possesses four phases, as shown in Fig. 1:
the usual Néel phase, two spiral antiferromagnetic phases
ordered at �q ,q� and �q ,��, and a phase consisting of two
independent sublattices. The Néel phase is bounded by the
classical critical line �J2+2J3� /J1=1 /2.

When quantum fluctuations are taken into account, the
phase diagram changes considerably:8,16,20–22 the Néel phase
substantially extends to larger values of J3, up to the line of
maximal frustration �J2+J3� /J1=1 /2. In the vicinity of this
line, it is believed that the classical ordered ground state is
destabilized and a singlet ground state is formed.8 The pre-
cise nature of this state is still controversial: suggestions in-
clude columnar valence bond crystals,23 plaquette states,8

and spin liquids.24–28 Special attention has been devoted to
the end points of the line: the point at J3 /J1=1 /2 that sepa-
rates the Néel from the spiral antiferromagnetic phase24,26,28

and the tricritial point at J2 /J1=1 /2 at which three phases
meet.7,25,27,29

In the following, we focus on two lines in the phase dia-
gram that include these points: J2=0 �J1−J3 model� and J3
=0 �J1−J2 model�. In both cases, we apply the PEPS algo-
rithm and discuss our observations. Our investigations are
thereby inspired by the discussions in Ref. 8. We obtain the
PEPS approximation of the ground state via imaginary time
evolution, as described previously. Imaginary time evolution
is very stable and always tends to the global minimum, in-
dependent of the starting state. In the course of the time
evolution, we increase the virtual dimension D, starting from
D=2, and decrease the Trotter step �t, starting from �t
=0.03 /J1, until the relative changes in the ground state en-
ergy are of order 10−3. This is usually achieved for D=4 and
�t=0.003 /J1. Typically, D=4 only leads to a minor reduction
in the energy. The energy as a function of the imaginary time
evolution steps is plotted in Fig. 2 for the special case of a
10�10 lattice and J3 /J1=0.5.

A. Spin-spin correlations

In order to get a first idea of the nature of the ground state,
we calculate the spin-spin correlation functions �sk ·sl� and
the corresponding static structure factor,

S�q� =
1

N2�
kl

eiq·�rk−rl��sk · sl� , �1�

in the PEPS approximation of the ground state for 0
�J3 /J1�1 at J2=0 and 0�J2 /J1�1 at J3=0.

1. J1−J3 model

In the case of J2=0, we observe that S�q� is peaked at
q= �� ,�� for J3 /J1�0.5, indicating long-range Néel order.
This order disappears at J3 /J1�0.5 at which the structure
factor becomes smooth. At around J3 /J1�0.7 peaks at
��� /2, �� /2� reappear indicating a revival of incommen-
surate long-range order. Figure 3 depicts the functional char-
acteristics of the structure factor S�q� at selected points J3 /J1
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FIG. 1. Classical phase diagram of the J1−J2−J3 model consist-
ing of �I� a Néel phase, �II� a phase consisting of two independent
sublattices, �III� a helical phase with order �q ,q�, and �IV� a helical
phase with order �q ,��. The dashed line denotes the boundary of
the Néel phase when quantum fluctuations are taken into account.
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FIG. 2. �Color online� Energy per site as a function of the imagi-
nary time evolution steps. The lattice size is 10�10 and J3 /J1

=0.5. The inset shows the magnified tail of the energy function. The
vertical lines separate the plot into three regions: in these regions,
the Trotter step �t is chosen equal to 0.03 /J1, 0.01 /J1, and
0.003 /J1, respectively.
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FIG. 3. �Color online� Structure factor S�q� for J3 /J1=0, 0.2,
0.5, and 0.9. The results were obtained for a 14�14 lattice and
virtual dimension D=3.
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calculated with a D=3 PEPS on a 14�14 lattice.
The collapse of long-range order is confirmed by a direct

observation of the spin-spin correlations. These are shown in
Fig. 4. Here, correlations with the central spin are plotted as
functions of the distance. As can be seen, the spins are anti-
ferromagnetically ordered for J3 /J1�0.5. For J3 /J1	0.5,
every second spin possesses antiferromagnetic order. How-
ever, the long-range order of the spins disappears in the vi-
cinity of J3 /J1�0.5.

The separation in long- and short-range order regimes
gets more and more evident with growing number of sites.
This can be gathered from Fig. 5. Here, S�� ,�� and
S�� /2,� /2� are plotted as functions of J3 /J1, evaluated for
various numbers of sites N. An extrapolation to the thermo-

dynamic limit �N→�� shows that S�� ,�� remains finite
within the region J3 /J1
0.3 and is zero otherwise. On the
other hand, S�� /2,� /2� is zero up to J3 /J1�0.7 and finite
for larger values of J1 /J3. The region of short-range order is
thus narrowed down to 0.3
J3 /J1
0.6.

The extrapolation was obtained by fitting a polynomial of
degree 3 in 1 /N to values of S�q� for various values of N.
The error bars in the plot indicate the error estimates for the
predictions. The data points are usually fitted very well with
such a polynomial as can be seen in Fig. 6. In this figure, for
selected points J3 /J1, the scaling of S�q� with N is plotted
and the best fit by a polynomial of third degree in 1 /N is
drawn. From this fit, we obtain the predictions for the ther-
modynamic limit.

2. J1−J2 model

For J3=0, the static structure factor shows the following
behavior: for J2 /J1
0.5 the structure factor is peaked at
�� ,�� which indicates long-range Néel order. For J2 /J1
larger than 0.5, columnar long-range order develops which is
detected by a peak at �0,��. In fact, this columnar long-
range order reveals an order by disorder phenomenon:30

quantum fluctuations select from the huge manifold of clas-
sical ground states configurations where all spins are parallel
in a given direction. In the regime in between the Néel and
the columnar phase the peaks disappear and long-range order
breaks down. The structure factor obtained from the PEPS
calculation for D=3 and a 14�14 lattice is plotted in Fig. 7
for selected values of J2 /J1.

In Fig. 8, S�� ,�� and S�� ,0� are plotted as functions of
J2 /J1 for various numbers of sites N. The extrapolation to the
thermodynamic limit indicates that S�� ,�� remains finite for
J2 /J1
0.5, and that S�� ,0� is finite for J2 /J1�0.5. Thus,
the systems consists of two phases with long-range order
plus a possibly very small short-range order phase in the
vicinity of J2 /J1�0.5.
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FIG. 4. �Color online� Spin-spin correlations �si ·s j� as functions
of the distance �= �i− j� for the 14�14J1−J3 model at J3 /J1=0,
0.2, 0.5, and 0.9. The results have been obtained using a D=3 PEPS
ansatz.
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FIG. 5. �Color online� Structure factors S�� ,�� �upper plot� and
S�� /2 ,� /2� �lower plot� as functions of J3 /J1 for various numbers
of sites N. The solid lines represent extrapolations to the thermody-
namic limit �see text�.
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IV. SHORT-RANGE RESONATING VALENCE BOND
STATES

The considerable decrease in the correlation length at
J3 /J1�0.5 and J2 /J1�0.5 opens the possibility for a short-
range resonating valence bond state �SRVB� in this area. We
investigate this possibility by doing a direct comparison of
the PEPS results to results obtained by an exact diagonaliza-
tion of the Hamiltonian in the subspace of SRVB.

A. J1−J3 model

In case of the J1−J3 model, the overlap between the
SRVB and the PEPS with virtual dimensions D=3 on a 6
�6 lattice can be gathered from Fig. 9 �lower plot�. As it can

be seen, the overlap increases up to 99% at the point J3 /J1
=0.5 and is significantly smaller in other regions. A compari-
son of energies, however, reveals that the set of valence bond
states does not cover all terms in the ground state. As shown
in the upper plot of Fig. 9, the energies of the diagonalization
within the subspace of SRVB are though very close to the
PEPS results at J3 /J1�0.5, always higher than the energies
obtained within the set of PEPS. Thus, the true ground state
at J3 /J1�0.5 might contain a small fraction of valence bond
terms that have longer range.

Even if it is assumed that the ground state is a pure SRVB
in the vicinity of J3 /J1=0.5, its properties can be very rich
and it needs a more precise classification. On the one hand, it
could be a state with broken translational symmetry such as
a columnar valence bond crystal or a plaquette state. On the
other hand, an equally weighted superposition of valence
bond states with restored translational symmetry known as
spin liquid is possible.

The observation of nearest-neighbor spin-spin correla-
tions �si ·s j� gives us an indication of a plaquette state.31

These correlations are shown in Fig. 10 for a 8�8 lattice
and D=3. In case of a pure plaquette state, the nearest-
neighbor spin-spin correlations would be equal to −1 /2 on a
plaquette and 0 between two plaquettes. In our case, the val-
ues of the spin-spin correlations deviate slightly from these
values, nonetheless a clear plaquette structure remains vis-
ible.

The state we observe has obviously a broken translational
symmetry. The plaquettes are formed between sites �i , j�, �i
+1, j�, �i , j+1�, �i+1, j+1�, with i and j always being odd.
The reason for this symmetry breaking is the chosen open
boundary conditions and the even number of sites in x and y
directions. The system chooses the configuration with a
maximal number of plaquettes. In case of open boundary
conditions and an even number of sites in each direction, this
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corresponds to the configuration of plaquettes with i and j
being odd.

B. J1−J2 model

The vicinity of the ground state to the class of SRVB in
the region J2 /J1�0.5 is analyzed in Fig. 11. The lower plot
shows the overlap of the PEPS ground state with the ground
state obtained by exact diagonalization within the PEPS sub-
space. Lattice size 6�6 and virtual dimensions D=3 were
considered. The overlap clearly reaches the maximum at
J2 /J1=0.5 and assumes a value of about 70%. A comparison
of the energies, as shown in the upper plot of Fig. 11, uncov-
ers that the true ground state will not be exactly in the sub-

space of SRVB: the energies of the PEPS calculations are
slightly lower than the ones obtained from SRVB, even at the
critical point. Nonetheless, the distance to the subspace of
SRVB might be very small for J2 /J1�0.5.

A more precise classification of the ground state turns out
to be more difficult than in the case of the J1−J3 model:
observations of the nearest-neighbor spin-spin correlations
�si ·s j� yield faint indications for a columnar dimer state.23

The magnitudes of the nearest-neighbor spin-spin correla-
tions for a 8�8 lattice, D=3 and J2 /J1=0.6 are shown in
Fig. 12. In a pure dimer state, the spin-spin correlations are
equal to −3 /4 on a dimer bond and zero between two dimer
bonds. Even though these values are not attained, a columnar
order of dimers is visible.

V. OTHER ORDER PARAMETERS

In order to shed more light on the properties of the ground
state in the maximally frustrated regime, more elaborate or-
der parameters are investigated such as the plaquette order
parameter,31 the columnar order parameter, or the VBC order
parameter.8

The plaquette order parameter31 distinguishes clearly a
Néel ordered phase from a plaquette valence bond crystal. It
is defined, using the cyclic permutation operator P��� of the
four spins , �, �, and � on one plaquette, as

Q��� =
1

2
�P��� + P���

−1 � = 2�s · s�s� · s� + s · s�s� · s�

− s · s�s� · s�� +
1

2
�s · s� + s� · s� + s · s� + s� · s��

+
1

2
�s · s� + s� · s� + 1/4� .

In case of a pure plaquette state, this order parameter as-
sumes the value 1 on each plaquette; between the plaquettes,
its expectation value is 1/8. The order parameter vanishes in
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case of the Néel state which lacks the cyclic permutation
symmetry.

The columnar order parameter and the VBC order
parameter8 are defined as structure factors of dimmer-dimer
correlations:

S� =
1

NB
�
�k,l�

���k,l����si · s j��sk · sl�� − ��si · s j��2	 .

Here, k and l run over all pairs of neighboring sites. i and j
have fixed values and they point to two neighboring sites at
the center of the lattice. � represents either “col” or “VBC”
and the phase factor ���k , l� is defined according to Fig. 7 in
Ref. 8. NB denotes the number of terms with ���k , l��0. As
discussed in Ref. 8, SVBC and Scol show a different behavior
in the plaquette and the columnar dimer phase: in the
plaquette phase, SVBC remains finite in the thermodynamic
limit and Scol tends to zero, whereas in the columnar dimer
phase, both SVBC and Scol remain finite.

All these order parameters are based on dimmer-dimer
correlations which are difficult to obtain with high precision
from PEPS calculations. Nonetheless, our results give a
qualitative picture of the ground state.

A. J1−J3 model

In Fig. 13, we plot the plaquette order parameter evalu-
ated on all square clusters for J3 /J1=0.5 and a 8�8 lattice.
The results are obtained using a PEPS ansatz with D=3. A
clear plaquette structure is visible, though the absolute values
of the expectation values differ slightly from the optimal
ones.

In Fig. 14, both structure factors SVBC and Scol are plotted
as functions of J3 /J1 for various lattice sizes. The values
were obtained from a PEPS simulation with D=3. The solid
lines indicate extrapolations to the thermodynamic limit �N
→��. The extrapolations were obtained by fitting polynomi-
als of first degree in 1 /N. It can be seen that SVBC is clearly

peaked in the region 0.4
J1 /J3
0.8. In addition, Scol is 3
orders of magnitude smaller than SVBC in this region. This
gives us an indication for a plaquette state in the region
0.4�J1 /J3�0.8.

Thus, the PEPS algorithm reproduces well the properties
of the J1−J3 model in the regimes of weak frustration and
gives strong indications for a plaquette ordered state in the
regime of strong frustration. In this regime, our results are
consistent with those of Ref. 8.

B. J1−J2 model

In Fig. 15, the structure factors SVBC and Scol as functions
of J2 /J1 are plotted for various lattice sizes. The virtual di-

0.82 0.38 0.79 0.48 0.76 0.37 0.83

0.38 -0.04 0.10 -0.03 0.22 -0.05 0.39

0.76 0.24 0.81 0.36 0.79 0.24 0.76

0.46 -0.04 0.22 -0.03 0.20 -0.04 0.46

0.76 0.23 0.79 0.32 0.80 0.23 0.76

0.39 -0.05 0.22 -0.04 0.22 -0.05 0.39

0.82 0.37 0.76 0.46 0.76 0.37 0.82

FIG. 13. �Color online� Plaquette order parameter Q��� at
J3 /J1=0.5, evaluated on a 8�8 lattice. The used virtual dimension
is D=3.
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FIG. 14. �Color online� Structure factors Scol and SVBC as func-
tions of J3 /J1 for lattice sizes 6�6, 8�8, and 10�10, calculated
using PEPS with D=3. The solid lines represent extrapolations to
the thermodynamic limit.
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FIG. 15. �Color online� Structure factors Scol and SVBC as func-
tions of J2 /J1 for lattice sizes 6�6, 8�8, and 10�10, calculated
using PEPS with D=3. The solid lines represent extrapolations to
the thermodynamic limit.
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mension used for the PEPS simulation was D=3. Again, the
solid lines represent extrapolations to the thermodynamic
limit. As can be seen, both quantities feature regions in
which they are finite and regions in which they tend to zero
rapidly. In the case of Scol, the structure factor is very small
for J2 /J1
0.5 and finite otherwise. On the other hand, SVBC
is finite for J2 /J1
0.7 and close to zero otherwise. This
indicates the existence of a columnar dimer phase within the
region 0.5
J2 /J1
0.7.

VI. CONCLUSIONS

In conclusion, we have applied the PEPS algorithm to the
J1−J2 and J1−J3 models and discussed our observations. In
both models we observed a separation in long- and short-

range order regions. In the short-range order regions, the
ground state seems to lie within the subspace of SRVB
states. Due to lack of precision we cannot settle the question
of whether the ground state is a VBC or a spin liquid, but
there are strong indications that the ground state is a
plaquette state in case of the J1−J3 model and a columnar
dimer state in case of the J1−J2 model. Simulations with
higher D and the inclusion of symmetries might lead to a
more concrete answer.
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